EMISSION INVENTORY FOR POWER PLANTS AND PASSENGER CARS IN PENINSULAR MALAYSIA FOR THE YEARS 2008-2014

Ainaa Amirah Md Zubir¹, Nuradiba Syahira Rusli¹, Abbas F.M. Alkarkhi², Yusri Yusup¹*

¹ Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.

² Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrial Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia

*Email: yusriy@usm.my

ABSTRACT

The Department of Environment of Malaysia has identified power plants and motor vehicles as major sources of air pollution. In 2014, both power plants and motor vehicles contributed 23% and 68% of air pollutants to air pollution, respectively. The purpose of this study is to develop an emission inventory – a record of data that lists the amount and location of air pollutant emissions – for power plants and passenger cars in Peninsular Malaysia from 2008 to 2014. The emission inventory focuses on air pollutants and greenhouse gases, SO₂, NO_X, PM₁₀, PM_{2.5}, CO, CO₂, and N₂O. To develop the emission inventory, we used the "simple" method. Activity data for the power plants are fuel consumption, while activity data for the passenger cars are fuel consumption and vehicle kilometre travelled. We assumed default emission factor values due to unavailability of Malaysia-specific values. The results show that in 2014, the power plants of the independent power producers emitted 35.1 metric tons while the national power producer emitted 14.6 metric tons of air pollutants (SO₂, NO_X, PM₁₀, PM_{2.5}, CO, and CO₂). As for the passenger cars, the mass of air pollutants and greenhouse gases (NO_X, CO, N₂O, and CO₂) emitted, for petrol was 36.2 metric tons while for diesel was 26 metric tons. We projected that by 2020, based on the year 2008, the power plants will emit 56.5 metric tons of SO₂, NO_X, CO, CO₂, and N₂O at a cumulative growth rate of 15.6%, and the passenger cars will emit 122.9 metric tons of NO_X, CO, CO₂, and N₂O at a cumulative growth rate of 67.2%.

Keywords: Air pollutants, air pollution, emission inventory, mobile combustion, stationary combustion.

INTRODUCTION

The Department of Environment of Malaysia estimated that motor vehicles and power plants release large amounts of pollutants to the atmosphere (68% and 23% of the total air pollutants emitted, respectively). These reported values were projected from emission factors and emission inventories retrieved from international emission inventory guidelines. Currently, there are no specific emission factor or emission inventory for Malaysia. In this study, we developed a preliminary emission inventory for power plants and passenger cars for Peninsular Malaysia for the years 2008 to 2014. This effort is the first step in constructing a detailed and accurate emission inventory for Malaysia.

An emission inventory is a data record that tabulates the source and mass of air pollutants emitted from emission sources for certain periods and locations. A detailed national emission inventory is a yearly report that comprises of emission rates of "criteria air pollutants" and greenhouse gases from categories of air pollution sources or "sectors". Criteria air pollutants are sulphur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), and particulate matter (PM) while greenhouse gases are carbon dioxide (CO₂), nitrous oxide (N₂O), and methane (CH₄). The sectors include the stationary fuel combustion sector (power plants), the mobile fuel combustion sector (passenger cars), and the industrial processes sector (manufacturing plants), among others. The emission inventory can be developed using the "simple" method where the emission rate is the product of the "activity data" (mass of fuel consumption, vehicle kilometre travelled, etc.) and the emission factor (mass of pollutant emitted per activity data).

The lack of emission factors and emission inventories reduce the utility of estimated emissions for environmental risk assessments and economic planning endeavours. Thus, it is imperative that a detailed and specific emission factor and emission inventory be developed for Malaysia. Towards this end, this paper reports the preliminary emission inventory for the years 2008 to 2014 for power plants and passenger cars for Peninsular Malaysia.

METHODS

International emission inventory guidelines

Several emission inventory guidelines detail reliable methods in developing an emission inventory for the stationary fuel combustion and mobile fuel combustion sectors. These guidelines are the Guidelines for Developing Emission Inventory for East Asia 2011, The Global Atmospheric Pollution (GAP) Forum Air Pollutant Emission Inventory Manual 2012, and the European Monitoring and Evaluation Program/European Environment Agency (EMEP/EEA) Emission Inventory Guidebook 2013. These guidelines provide crucial information in developing emission inventory suited for our intended purposes and identified sectors [1-3].

Data requirements for power plants

Power plants release large quantities of SO₂, NO₂, CO, PM, and CO₂. Power plants burn fossil fuel to produce electricity [4]. There are four types of electricity producers in Malaysia, which are the national power producer (TNB), the independent power producers (IPP), the co-generation producers, and the self-generation producers. Figure 1 shows the distribution of power plants in Peninsular Malaysia. There are six TNB power plants and seventeen IPP power plants. Emission factors for power plants depend on the fuel-type used. There are three types of power plants in Malaysia, the coal-fired, gas-fired, and the gas-coal-fired or gas-oil-fired combination power plants. To date, there are fourteen gas-fired, four coal-fired, and five combination power plants in Peninsular Malaysia [5]. Per the Energy Commission of Malaysia, most power plants use natural gas, followed by coal and oil. Because natural gas and coal are cheap, most of the electricity supply comes from the gas-fired and coal-fired power plants. Power plants rarely use oil as it is expensive [6]. We gathered the emission factors for each fuel-type used, the amount of fuel consumed, and the location of the power plant to develop the emission inventory for Peninsular Malaysia.

Although the emission factors for power plants can be calculated, we used the default emission factors from guidelines instead of the Malaysia-specific emission factor due to unavailability of data. The activity data for power plants (i.e., the amount of natural gas, coal, or diesel consumption) need to be in the unit of Net Calorific Value (NCV) as most of the emission factors available in the literature are using this unit [1]. The activity data are calculated using Eq. (1).

$$Activitydata = Fuelconsumption \times NCV$$

(1)

Figure 1. Locations of the national power producers (TNB) and the independent power producers (IPP) in Peninsular Malaysia, red points indicate the IPPs and blue points indicate the TNB.

Data requirements for passenger cars

The passenger car is the preferred form of road transport in Malaysia [7]. Passenger cars are the primary sources of NO_2 , CO [8], CO_2 [9], and N_2O [10]. The World Bank Data reported that diesel and petrol make up 95% of total fuel consumed by the road transport sector. Hence, the emission inventory for passenger cars was developed from emission factors retrieved from international emission inventory guidelines and the published literature. The emission factor is the mass of pollutants emitted per car per fuel consumed by fuel-type (diesel or petrol) while the activity data is the fuel consumed and the number of active cars. Fuel consumption data is assumed to be the same with the amount of fuel sold.

The amount of fuel sold for 2009 to 2014 in Peninsular Malaysia was calculated based on the growth rate of active passenger cars in 2008 and the annual amount of fuel sold (obtained from the annual National Energy Balance of Malaysia reports). The growth rate based on the year 2008 (% per year) was calculated using Eq. (2),

$$Growthrate = \left[\frac{V_a - V_b}{V_b}\right] \times 100\%$$
⁽²⁾

where, V_a is the total active passenger cars in a year, V_b is the total active passenger car in 2008. The amount of fuel sold was calculated using Eq. (3),

$$Fuelsold_{i,p} = \left[\frac{GR_{n,p} \times Fuelsold_{i,m}}{GR_{n,m}}\right]$$
(3)

where, Fuel sold_{i,p} is the estimated annual amount of fuel of type i (diesel or petrol) sold in Peninsular Malaysia, $GR_{n,p}$ is the growth rate of active passenger cars in year n (n = 2009, 2010, ..., 2014) in Peninsular Malaysia, Fuel sold_{i,m} is the annual amount of fuel of type i sold in Malaysia, and $GR_{n,p}$ is the growth rate of active passenger cars in year n in Peninsular Malaysia. The amount of fuel sold in Peninsular Malaysia had to be estimated from the total amount of fuel sold in Malaysia due to the limited data available in the National Energy Balance reports. Number of active passenger cars data was retrieved from the Department of Road Transport of Malaysia.

The vehicle kilometre travelled (VKT) activity data was calculated using Eq. (4) where it is a product of the annual average of vehicle kilometre travelled (AAVKT) for each state in Peninsular Malaysia and the total number of active passenger cars within each state.

$$VKT_S = [PC_S \times AAVKT_S] \tag{4}$$

where, VKT_S is the vehicle kilometre travelled for the states in Peninsular Malaysia, PC_s is the total number of active cars in the states in Peninsular Malaysia, and AAVKT_S is the annual average vehicle kilometre travelled in the states in Peninsular Malaysia. The data for AAVKT were retrieved from [7] which is only available for the year 2013. Hence, only the emission inventory for 2013 was developed using VKT as the activity data.

The emission factor and the activity data were used to calculate the emission rates for the passenger cars. For the fuel consumption activity data, the emission factor with the amount of air pollutant emitted per amount of fuel consumed (gram per Giga-Joules) was used, while for the VKT activity data, the amount of air pollutant emitted per kilometre travelled (gram per kilometre) was used. The emission rates of air pollutants and greenhouse gases, NO_X , CO, CO_2 , and N_2O , were then calculated.

RESULTS

Activity data and emission factors for power plants

The Energy Commission of Malaysia publishes reports on the list of power plants, the type of power plant, the type of fuel consumption, the licensed capacity, and the units of electricity generated in a year. Although these data are provided, there is no data on the fuel consumption of the power plant. Fuel consumption can be estimated for each power plant by using the units of electricity generated. Per the United States Energy Information Administration (U.S. EIA), there are two assumptions that can be made to calculate the amount of fuel consumption:

- 1. One kilowatt-hour (kWh) of electricity = 0.00052 metric tons of coal.
- 2. One kilowatt-hour (kWh) of electricity = 10.11 ft³ of natural gas.

In this study, Net Calorific Value (NCV) of fuel was not used in the calculation of activity data, as the fuel consumption is already in the unit of tera-Joules per year [1]. Based on these assumptions, the amount of fuel combusted for coal and natural gas power plants and for the independent and national power producers were calculated and listed in Table 1.

Table 1	. Fuel	consump	tion f	for power p	plants	using	g coal	and	natural	gas a	and	for the	indep	endent	(IPP)	and	national	power
				produce	rs (TN	B) in	Peni	nsula	ar Mala	ysia f	fron	n 2008	to 201	4.				

Year	Type of	Fuel consumption	Type of power	Fuel consumption	
	fuel	(tera-Joules)	plant	(tera-Joules)	
2000	Coal	63 614	IPP	505 547	
2008	Natural gas	737 303	TNB	295 369	
2009	Coal	71 016	IPP	462 345	
	Natural gas	707 146	TNB	315 817	
2010	Coal	93 844	IPP	476 197	
	Natural gas	677 701	TNB	295 348	
2011	Coal	103 850	IPP	486 916	
	Natural gas	639 526	TNB	256 191	
2012	Coal	109 889	IPP	503 803	
	Natural gas	674 755	TNB	280 841	
2012	Coal	106 542	IPP	565 716	
2015	Natural gas	724 923	TNB	265 748	
2014	Coal	109 951	IPP	544 357	
2014	Natural gas	693 587	TNB	259 181	

The highest fuel consumption and electricity generated for the TNB was in 2012 while for the IPP was in 2013. Although the role of IPP is to support the TNB, IPP generated more power than TNB due to the higher number of IPP plants.

Units of electricity generated are directly proportional to the amount of fuel combusted. It can be observed that the trends for the units generated and the fuel consumption was the same for both natural gas and coal. However, the amount needed for coal to generate electricity is different than that of natural gas. Even though the number of coal power plants in Peninsular Malaysia is a lot less than the natural gas power plant (four versus nineteen), including the combination of natural

gas and diesel power plants, the coal power plant accounted for more than 30% of the total electricity generated. This is because the licensed capacities of the coal power plants were significantly higher than the natural gas power plants.

Default emission factors that are obtained from the Guidelines for Developing Emission Inventory in East Asia 2011 are used in calculating the emission rate as it is the highest emission factor compared to other guidelines. This gives the worst-case scenario for the air pollutants emitted. We found that the emission factor values for the coal were always larger than that of the natural gas. Thus, the emission of air pollutants from the coal power plant was higher than the natural gas power plant.

Emission inventory for power plants

Emission rates for each of the air pollutants and greenhouse gases - SO₂, NO_X, PM₁₀, PM_{2.5}, CO, and CO₂ - are estimated using the "simple" method based on the activity data (i.e., fuel consumption) and default emission factors from the Guidelines for Developing Emission Inventory in East Asia 2011.

Table 2 lists the emission inventory for the type of fuel used and type of power plant, respectively. Based on the table, the coal power plants emitted a higher amount of pollutants than natural gas as the coal emission factors were larger than the natural gas. Except for the year 2013, the mass of air pollutants emitted by the coal power plants was the same for all pollutants and showed a gradual increase with the year. Conversely, the emissions from the natural gas power plant decreased with the year. Thus, the coal power plant and natural gas power plant were correlated because both power plants need to cater to the nation's electricity demands. The emission factors of PM_{10} and $PM_{2.5}$ for natural gas are the same, which are 0.9 and 0.89 gram GJ^{-1} , respectively and therefore no difference regarding emission rates was observed. As for the type of plants, IPP emitted more air pollutants compared to TNB because the number of IPP power plants was greater than the number of TNB power plants.

The pollutant with the lowest emission rate was SO_2 from the TNB gas-fired power plant, but the pollutant with the highest emission rate was also SO_2 but from the IPP power plants. This is because the IPP has both coal- and gas-fired power plants, and the emission factors between the coal and gas power plants vary widely. IPP was the main contributor to air pollution as it had both coal and natural gas power plants. The lower emission factors of natural gas undermined the fact that the number of the natural gas power plants was larger than the coal power plants.

The highest emission rate of criteria pollutants was recorded in the year of 2012. But for the greenhouse gas (CO₂), the highest emission rate was recorded in 2013. Per the U.S. Energy Information Administration [11], the least amount of CO₂ released for an equivalent amount of energy production is the natural gas. Again, due to the large number of natural gas power plants in the Peninsular Malaysia, the highest contributor to CO_2 emissions was the natural gas power plants.

Vaar	(Coal pow	er plants	(metric t	ons per ye	ear)	Natural gas power plants (metric tons per year)					
rear	SO_2	NO_X	PM_{10}	PM _{2.5}	СО	CO_2	SO_2	NO_X	PM_{10}	PM _{2.5}	CO	CO_2
2008	52 163	19 720	1 272	573	9 542	6 113 273	221	65 620	664	664	28 755	41 362 690
2009	58 233	22 015	1 420	639	10 652	6 824 615	212	62 936	636	636	27 579	39 670 902
2010	76 952	29 092	1 877	845	14 077	9 018 423	203	60 315	610	610	26 430	38 019 009
2011	84 936	32 110	2 072	932	15 537	9 954 041	192	56 918	576	576	24 942	35 877 424
2012	90 109	34 066	2 198	989	16 483	10 560 342	202	60 053	607	607	26 315	37 853 750
2013	87 364	33 028	2 131	959	15 981	10 238 676	218	64 518	652	652	28 272	40 668 155
2014	90 160	34 085	2 199	990	16 493	10 566 253	208	61 729	624	624	27 050	38 910 232
	Independent power producers (metric tons per year)											
Voor	Indepe	endent po	wer prod	lucers (m	etric tons	per year)	Na	ational po	wer prod	ucers (me	tric tons p	er year)
Year	Indepe SO ₂	endent po NO _X	wer prod PM ₁₀	lucers (m PM _{2.5}	etric tons	per year) CO ₂	Na SO ₂	ational po NO _X	wer prod PM ₁₀	ucers (me PM _{2.5}	tric tons p	er year) CO ₂
Year - 2008	Indepe SO ₂ 52 296	endent po NO _X 59 052	wer prod PM ₁₀ 1 670	PM _{2.5}	etric tons CO 26 778	per year) CO ₂ 30 905 749	Na SO ₂ 89	ational po NO _X 26 288	wer prod PM ₁₀ 266	ucers (me PM _{2.5} 266	tric tons p CO 11 519	er year) CO ₂ 16 570 214
Year - 2008 2009	Indepo SO ₂ 52 296 58 350	endent po NO _X 59 052 56 843	Wer prod PM ₁₀ 1 670 1 773	PM _{2.5} 970 991	etric tons CO 26 778 25 914	per year) CO ₂ 30 905 749 28 778 176	Na SO ₂ 89 95	ational po NO _X 26 288 28 108	wer prod PM ₁₀ 266 284	ucers (me PM _{2.5} 266 284	tric tons p CO 11 519 12 317	er year) CO ₂ 16 570 214 17 717 341
Year - 2008 2009 2010	Indepe SO ₂ 52 296 58 350 77 067	endent po NO _X 59 052 56 843 63 121	wer prod PM ₁₀ 1 670 1 773 2 221	lucers (m PM _{2.5} 970 991 1 189	etric tons CO 26 778 25 914 28 989	per year) CO2 30 905 749 28 778 176 30 468 415	Na SO ₂ 89 95 89	ntional po NO _X 26 288 28 108 26 286	wer prod PM ₁₀ 266 284 266	ucers (me PM _{2.5} 266 284 266	tric tons p CO 11 519 12 317 11 519	er year) CO ₂ 16 570 214 17 717 341 16 569 017
Year - 2008 2009 2010 2011	Indepe SO ₂ 52 296 58 350 77 067 85 051	NOx 59 052 56 843 63 121 66 227	wer prod PM ₁₀ 1 670 1 773 2 221 2 417	lucers (m PM _{2.5} 970 991 1 189 1 277	etric tons CO 26 778 25 914 28 989 30 487	per year) CO2 30 905 749 28 778 176 30 468 415 31 459 164	Na SO ₂ 89 95 89 77	NOx 26 288 28 108 26 286 22 801	wer prod PM ₁₀ 266 284 266 231	ucers (me PM _{2.5} 266 284 266 231	tric tons p CO 11 519 12 317 11 519 9 991	er year) CO2 16 570 214 17 717 341 16 569 017 14 372 301
Year - 2008 2009 2010 2011 2012	Indepe SO ₂ 52 296 58 350 77 067 85 051 90 227	endent po NO _x 59 052 56 843 63 121 66 227 69 124	wer prod PM ₁₀ 1 670 1 773 2 221 2 417 2 552	PM _{2.5} 970 991 1 189 1 277 1 344	etric tons CO 26 778 25 914 28 989 30 487 31 846	per year) CO2 30 905 749 28 778 176 30 468 415 31 459 164 32 658 895	Na SO ₂ 89 95 89 77 84	ational po NO _x 26 288 28 108 26 286 22 801 24 995	wer prod PM ₁₀ 266 284 266 231 253	ucers (me PM _{2.5} 266 284 266 231 253	tric tons p CO 11 519 12 317 11 519 9 991 10 953	er year) CO2 16 570 214 17 717 341 16 569 017 14 372 301 15 755 197
Year - 2008 2009 2010 2011 2012 2013	Indepo SO ₂ 52 296 58 350 77 067 85 051 90 227 87 502	NOx 59 052 56 843 63 121 66 227 69 124 73 895	wer prod PM ₁₀ 1 670 1 773 2 221 2 417 2 552 2 544	PM2.5 970 991 1 189 1 277 1 344 1 372	CO 26 778 25 914 28 989 30 487 31 846 33 889	per year) CO2 30 905 749 28 778 176 30 468 415 31 459 164 32 658 895 35 998 366	Na SO ₂ 89 95 89 77 84 80	NOx 26 288 28 108 26 286 22 801 24 995 23 652	wer prod PM ₁₀ 266 284 266 231 253 239	ucers (me PM _{2.5} 266 284 266 231 253 239	tric tons p CO 11 519 12 317 11 519 9 991 10 953 10 364	er year) CO2 16 570 214 17 717 341 16 569 017 14 372 301 15 755 197 14 908 465

 Table 2. Emission inventory for the coal and natural gas power plants and for the independent and national power producers in the Peninsular Malaysia from 2008 to 2014.

Activity data and emission factors for passenger cars

The amount of fuel consumed by passenger cars was calculated using Eq. (3) and the results are shown in **Table 3**. The growth rate of active passenger cars increased over the years; hence the increase in fuel consumed. Most of the fuel consumption of passenger cars were of type petrol because only a small percentage of passenger cars use diesel. The usage

of diesel is generally for hybrid, large-capacity engine, and high-technology cars, which accounts for a small fraction of the total number of active cars.

Table 4 lists the vehicle kilometre travelled (VKT) for passenger cars in each state in the Peninsular Malaysia in 2013 calculated using Eq. (4). The table shows that the highest number of VKT for the year 2013 was Kuala Lumpur, which was 1.18×10^{11} kilometres. Selangor recorded the second largest VKT followed by Pulau Pinang and Johor. The smallest VKT was from Perlis because it is the smallest state and the least developed. The range of annual average vehicle kilometre travelled (AAVKT) in developed countries is between 10 000 and 18 000 kilometres per car [12]. The states of Johor, Kedah, and Perlis were within this range.

Table 3. Estimated fuel consumption activity data for passenger cars in Peninsular Malaysia for 2008-2014.

Year	Type of fuel	Fuel consumption (tera-Joules)
2008	Petrol Diesel	353 000 212 000
2009	Petrol Diesel	377 000 220 000
2010	Petrol Diesel	411 000 203 000
2011	Petrol Diesel	343 000 265 000
2012	Petrol Diesel	367 000 239 000
2013	Petrol Diesel	529 000 280 000
2014	Petrol Diesel	521 000 350 000

Table 4. Vehicles kilometre travelled (VKT) for passenger cars in each state in the Peninsular Malaysia in 2013.

State	Number of active passenger	Annual average vehicle kilometre travelled ^b	Vehicle kilometre travelled VKT×10 ⁹ kilometres	
	cars	AAVKT (kilometres per car)		
Perlis	71 505	25 953	1.86	
Kedah	781 143	22 692	17.70	
Pulau Pinang	1 797 153	20 980	37.70	
Perak	1 429 589	24 933	35.60	
Selangor	1 709 452	28 576	48.90	
Kuala Lumpur	4 620 264	25 570	118.00	
Negeri Sembilan	567 574	24 620	14.00	
Melaka	543 866	23 552	12.80	
Johor	2 283 489	16 342	37.30	
Pahang	641 885	27 919	17.90	
Terengganu	414 316	23 461	9.72	
Kelantan	554 596	22 601	12.50	

^a Department of Road Transport of Malaysia

^bCar annual vehicle kilometre travelled estimated from the car manufacturers' data [7]

Default emission factors were used to calculate emission rates of passenger cars. These factors were retrieved from the Guidelines for Developing Emission Inventory in East Asia 2011 and the Intergovernmental Panel on Climate Change (IPCC). Emission factors vary with each type of fuel and activity data. Vehicles kilometre travelled, the total number of active passenger cars and the fuel standard are needed to develop the emission inventory. The fuel standard in the year 2013 was the "Euro 4" standard [13].

Emission inventory for passenger cars

The emission inventory for passenger cars is developed for air pollutants and greenhouse gases – CO, NO_X , CO_2 , and N_2O – based on the amount of fuel consumed and the vehicle kilometre travelled activity data using default emission factors. Table 5 lists the emission inventory for the petrol and diesel passenger cars for the Peninsular Malaysia from 2008 to

2014, using fuel consumption as the activity data. The table shows that the highest gas emitted was the petrol passenger car for CO_2 followed by CO, 36.7 metric tons and 1.18 metric tons in 2013, respectively. N₂O contributed the smallest amount to the total emission, which was not more than 350 metric tons per year. However, its trend was increasing with year. NO_X emissions were higher than N₂O but lower than CO₂ and CO. The trend increased from 2008 to 2010 but suddenly dropped in 2011 until 2013. This might be due to the decreased fuel consumed caused by the MYR0.50 increase in petrol price. We found that the diesel passenger car also had the same trend as the petrol passenger car but with less pollutants emitted to the atmosphere.

For the emission inventory using the vehicle kilometre travelled as the activity data, the passenger car emission inventory is listed in Table 6 for the year 2013. Regarding the emissions, it has the same trend as the emission inventory using the fuel consumed activity data. Most of the pollutants emitted were CO_2 , followed by CO, NO_X , and N_2O . For both fuel type, Kuala Lumpur was the largest contributor to air pollution as it has the highest number of active passenger cars.

 Table 5. The emission inventory for the petrol and diesel passenger car for the Peninsular Malaysia from 2008 to 2014 using fuel consumption as the activity data.

Vaar	Petrol pa	ssenger o	cars (me	tric tons)	Diesel passenger cars (metric tons)				
rear	CO	NO_X	N_2O	CO_2	CO	NO _X	N_2O	CO ₂	
2008	786 000	1 130	212	24 500 000	20 600	827	127	15 700 000	
2009	840 000	1 210	226	26 100 000	21 400	858	132	16 300 000	
2010	915 000	1 320	247	28 500 000	19 700	792	122	15 000 000	
2011	764 000	1 100	206	23 800 000	33 300	1 340	160	25 400 000	
2012	817 000	1 170	220	25 400 000	23 200	1 160	143	17 700 000	
2013	1 180 000	1 700	317	36 700 000	27 200	1 090	168	20 700 000	
2014	1 160 000	1 670	313	36 100 000	34 000	1 370	210	26 000 000	

 Table 6. The emission inventory for the petrol and diesel passenger car for the Peninsular Malaysia from 2008 to 2014 using vehicle kilometre travelled as the activity data.

State	Petrol	passenge	r cars (1	metric tons)	Diesel passenger cars (metric tons)				
State	CO	NOX	N_2O	CO_2	СО	NO_X	N_2O	CO_2	
Perlis	1 220	115	9	430 000	19	180	1 1 2 0	430 000	
Kedah	11 600	1 100	89	4 050 000	117	1 720	10 600	4 050 000	
Pulau Pinang	24 800	2 340	189	8620 000	377	3 660	22 700	8 620 000	
Perak	23 400	2 210	178	8140 000	356	3 450	21 396	8 140 000	
Selangor	32 200	3 030	245	11 200 000	490	4 740	29 400	$\begin{array}{c}11\ 200\\000\end{array}$	
Kuala Lumpur	77 600	7 320	590	27 000 000	1 180	11 400	71 000	27 000 000	
Negeri Sembilan	9 210	868	70	3 200 000	140	1 360	8 410	3 200 000	
Melaka	8 4 2 0	794	64	2 930 000	128	1 240	7 690	2 930 000	
Johor	24 500	2 310	187	8 530 000	373	3 620	22 400	8 530 000	
Pahang	11 800	1 110	90	4 090 000	179	1 740	10 800	4 090 000	
Terengganu	6 400	603	49	2 220 000	97	943	5 840	2 220 000	
Kelantan	8 2 3 0	775	63	2 880 000	125	1 210	7 510	2 880 000	

CONCLUSIONS

The emission inventory for the stationary fuel combustion was developed using the simple method, where the air pollutant emission rates are calculated using the activity data and the default emission factor. We employed the emission factors from the East Asia Guideline as it would give the worst-case air pollution scenario. The emission inventory for the passenger cars was developed using the combination of default emission factors and total active passenger cars, the annual amount of fuel sold, the annual growth rate, and the vehicle kilometre travelled as the activity data. Emission from petrol passenger cars contributed the most to air pollution compared to diesel passenger cars as petrol is more widely used than diesel. Kuala Lumpur was the principal source of air pollution due to the high vehicle kilometre travelled and the number of active passenger cars. Passenger cars emitted, for petrol, 36.2 mega-metric tons per year of pollutants while, for diesel, 26 mega-metric tons per year of pollutants. The total emission rate of the criteria air pollutants and the greenhouse gases (SO₂, NO_X, PM₁₀, PM_{2.5}, CO, and CO₂) from the independent power producers were higher compared to the national power

producers, which were 35.1 mega-metric tons per year and 14.6 mega metric tons per year, respectively. This is due to the large quantity of the independent power producers in Peninsular Malaysia. Moreover, the independent power producers had both types of power plants, coal- and gas-fired. Finally, we projected that by 2020 (based on the year 2008), power plants will emit 56.5 mega-metric tons per year of SO₂, NO_X, PM₁₀, PM_{2.5}, CO, and CO₂ at a cumulative growth rate of 15.6%. Passenger cars will emit 122.9 mega-metric tons per year of NO_X, CO, CO₂, and N₂O at a cumulative growth rate of 67.2%.

REFERENCES

- [1] Study Committee for Methodologies of Developing Emission Inventory in East Asia (2011). *Guidelines for Developing Emission Inventory in East Asia*. Japan: Ministry of the Environment.
- [2] Nielsen, O.K., Plejdrup, M., Rentz, O., Oertel, D., Woodfield, M., and Stewart, R. (2013). European Monitoring and Evaluation Program/European Environment Agency (EMEP/EEA) Emission Inventory Guidebook. Luxembourg: Publications Office of the European Union.
- [3] Vallack, H., Rypdal, K., Branco, G., Hao, J., and Bhattacharya, S. (2012). *The Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Manual*. United Kingdom: BOC Foundation, USEPA, Swedish International Development Cooperation.
- [4] Shafie, S.M., Masjuki, H.H. and Mahlia, T.M.I. (2014). Life cycle assessment of rice straw-based power generation in Malaysia. Energy, 70, 401-410.
- [5] Energy Commission (2014). Electricity Supply Industry in Malaysia, Performance and Statistical Information 2014, Energy Supply Regulatory. Malaysia: Energy Commission of Malaysia.
- [6] Mannhart, M.M.T. (2014). *Analysis of the Power System of Malaysia*. Energy Economics and Application Engineering. Munich: Technical University of Munich.
- [7] Shabadin, A., Johari, N.M. and Jamil, H.M. (2014). Car annual vehicle kilometer travelled estimated from car manufacturer data—an improved method in World Research & Innovation Convention on Engineering & Technology. Putrajaya, Malaysia: Federation of Engineering Institutions of Islamic Countries.
- [8] Bellasio, R., Bianconi, R., Corda, G., and Cucca, P. (2007). *Emission inventory for the road transport sector in Sardinia (Italy).* Atmospheric Environment, 41(4), 677-691.
- [9] Saija, S. and Romano, D. (2002). *Methodology for the estimation of road transport air emissions in urban areas of Italy*. Atmospheric Environment, 36(34), 5377-5383.
- [10] Fameli, K. and Assimakopoulos, V. (2015). Development of a road transport emission inventory for Greece and the Greater Athens Area: Effects of important parameters. Science of the Total Environment, 505(2015): 770-786.
- [11] USEIA (1998). *Natural gas and environment*. Natural Gas: Issues and Trends. United States Energy Infromation Administration: United States
- [12] Han, J. and Hayashi, Y. (2008). Assessment of private car stock and its environmental impacts in China from 2000 to 2020. Transportation Research Part D: Transport and Environment, 13(7), 471-478.
- [13] EEA (2007). Road transport group 7. European Environmental Agency Guidebook 2007. Luxembourg: European Environmental Agency.